
C - Pointers
Pointers in C are easy and fun to learn. Some C programming tasks are performed

more easily with pointers, and other tasks, such as dynamic memory allocation, cannot
be performed without using pointers. So it becomes necessary to learn pointers to
become a perfect C programmer. Let's start learning them in simple and easy steps.

As you know, every variable is a memory location and every memory location has its
address defined which can be accessed using ampersand (&) operator, which denotes an
address in memory. Consider the following example, which prints the address of the
variables defined −

#include <stdio.h>

int main () {

 int var1;

 char var2[10];

 printf("Address of var1 variable: %x\n", &var1);

 printf("Address of var2 variable: %x\n", &var2);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Address of var1 variable: bff5a400

Address of var2 variable: bff5a3f6

What are Pointers?
A pointer is a variable whose value is the address of another variable, i.e., direct address
of the memory location. Like any variable or constant, you must declare a pointer before
using it to store any variable address. The general form of a pointer variable declaration
is −

type *var-name;
Here, type is the pointer's base type; it must be a valid C data type and var-name is the
name of the pointer variable. The asterisk * used to declare a pointer is the same asterisk
used for multiplication. However, in this statement the asterisk is being used to designate
a variable as a pointer. Take a look at some of the valid pointer declarations −

int *ip; /* pointer to an integer */
double *dp; /* pointer to a double */
float *fp; /* pointer to a float */
char *ch /* pointer to a character */
The actual data type of the value of all pointers, whether integer, float, character, or
otherwise, is the same, a long hexadecimal number that represents a memory address.
The only difference between pointers of different data types is the data type of the
variable or constant that the pointer points to.

How to Use Pointers?
There are a few important operations, which we will do with the help of pointers very
frequently. (a) We define a pointer variable, (b) assign the address of a variable to a
pointer and (c) finally access the value at the address available in the pointer variable.
This is done by using unary operator * that returns the value of the variable located at the
address specified by its operand. The following example makes use of these operations −

#include <stdio.h>

int main () {

 int var = 20; /* actual variable declaration */

 int *ip; /* pointer variable declaration */

 ip = &var; /* store address of var in pointer variable*/

 printf("Address of var variable: %x\n", &var);

 /* address stored in pointer variable */

 printf("Address stored in ip variable: %x\n", ip);

 /* access the value using the pointer */

 printf("Value of *ip variable: %d\n", *ip);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Address of var variable: bffd8b3c
Address stored in ip variable: bffd8b3c
Value of *ip variable: 20

NULL Pointers

It is always a good practice to assign a NULL value to a pointer variable in case you do
not have an exact address to be assigned. This is done at the time of variable declaration.
A pointer that is assigned NULL is called a null pointer.

The NULL pointer is a constant with a value of zero defined in several

#include <stdio.h>

int main () {

 int *ptr = NULL

 printf("The value of ptr is : %x\n", ptr);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

The value of ptr is 0
In most of the operating systems, programs are not permitted to access memory at
address 0 because that memory is reserved by the operating system. However, the
memory address 0 has special significance; it signals that the pointer is not intended to
point to an accessible memory location. But by convention, if a pointer contains the null
(zero) value, it is assumed to point to nothing.

To check for a null pointer, you can use an 'if' statement as follows −

if(ptr) /* succeeds if p is not null */
if(!ptr) /* succeeds if p is null */

